谢谢关注。答复如下:
1)、已定系统误差是误差的测量结果,是测量结果而不再是误差(计量校准系统给出已定系统误差值的过程也是测量过程,和其他测量领域实际是一回事,其测量基准甚至是其他测量领域所提供的,并不具备技术上的实质优势地位。)。而且,一切赋予了确定数值的误差(包括粗差)都叫误差样本,误差样本是误差的测量结果,是测量结果而不再是误差;
此处的“已定系统误差”是“误差”的测量结果,不太好理解。例如用允差为±0.05%的电阻表(校准证书给出100W点的修正值为0.03W,不确定度U=0.02W)测量某一电阻,测得值为100.01W,如何理解您这句话,“已定系统误差”是谁?“误差”又是谁?“已定系统误差”的来源很多,如来自仪器的修正值、测量方法、对温度的修正等等。对于仪器的示值误差,其本质是测量结果,这很好理解。但是对特定量的测量似乎有点不好理解,因为得不到误差,也得不到已定系统误差,只有测量结果及其可能误差或不确定度。
答复:您已经回答了仪器的修正值是已定系统误差呀。
注意:已定系统误差概念不是我的主张,我的主张是误差的测量结果、误差(的)样本或修正值,因为已定系统误差还是误差的概念范畴。
2)、未定系统误差和随机误差没有区别,随机误差也是恒差(测量结果与数学期望之差),这样就不存在误差类别问题了,自然正确度精密度准确度概念就应当废除;
误差的类别问题应该还是要区分的,未定系统误差和随机误差还是有区别的,例如未定系统误差若来源于仪器的允差,其值是个恒差,在随后的测量中是不会变的;而随机误差如果来源于数字仪器的分辨力,对于单个测量结果来说是恒差,但是对于多个测量结果来说就不是恒差,而是在分辨力范围能的一系列差,说没有区别恐怕不妥。
答复:当有多余测量获得多个测量结果时,意味着测量还没有完成,专业测量人士都会做数据处理而给出最佳估值作为最终唯一测量结果(用户也不会接受多个互相不一致的结果),最终唯一测量结果与数学期望之差(所谓的随机误差)仍然是恒差。
注意:数据处理期间的那些赋予了确定数值的离散误差样本序列也是误差的测量结果,也不要把这些离散误差样本说成是随机误差。
3)、测量结果是对测量实施时刻的真值的响应(把真值在历史或未来的可能变化问题与当前测量切割开来讨论问题),测量结果的误差是未知的恒差。正因为误差未知,人类不能确定它的实际值,故而以不确定度来评价它所存在的概率区间的宽度;
有测量误差也就是测量结果的误差的定义,但是,自古至今人类进行测从来都不是为了获得测量结果的误差。采用“不确定度”的概念和处理方法,也不是“正因为误差未知,人类不能确定它的实际值,”只是如某文献所说的,为了解决概念混乱问题和合成方法等问题,不确定度评定内容就是对原误差理论中随机误差和未定系统误差的分析、合成和表达。
答复:您这还是停留在第三阶段,我能理解,但我现在已经进入第四了。
4)、测量结果的误差是恒差,来自于测量实施过程的所有源误差(也是恒差)的代数法则合成。又因为所有误差都遵循随机分布(随机分布的含义是存在于有限的概率区间内),结果的标准差自然来自所有源误差的标准差按照概率法则合成。这个总标准差就是不确定度。
上边提到概念混乱问题,这儿就来了,您自己看:“测量结果的误差是恒差,来自于测量实施过程的所有源误差(也是恒差)的代数法则合成。”,这句话里所说的“误差”应该指已定的系统误差,合成后是可以修正的,它不能与未定系统误差和随机误差进行合成,性质不同当然不能合成。“又因为所有误差都遵循随机分布”,这句话里所说的“误差”应该指未定系统误差和随机误差,误差理论教材中给出了按标准差合成和按极限误差合成两种方法,甚至还有项数少时也可按绝对值相加的方法,发展到现在叫“不确定度”。“这个总标准差就是不确定度。”完全正确!规矩湾和史老先生可能会大骂:“不确定度”纯属多余、纯属添乱了,将“不确定度”扼杀在摇篮之中。没办法事实就是这样,不要大惊小怪,史老痛恨的美国老先生是怎么想的我不知道,我个人愚见:GUM的核心内容就是用了个“不确定度”的概念,最后在不确定度U的表示上做了约定。其它过程看看误差理论都是类似或一样的,误差理论中未定系统误差有分布、概率和标准差,随机误差有分布、概率和标准差,有相关问题,有相关和不相关情况下的合成方法。在七八个国际组织的主导下经过多年的努力,也应该说是慎重的,出台了个GUM,使其成为误差理论的一部分,而且是核心部分,之所以制定成单独的国际标准、国家规范,是因为不确定度是测量结果中除测得值外另一个重要的参数,除了这一部分其它都很简单。
答复:
1、恒差是指不会变化的误差,但它仍然是未知,一个未知的恒定的常数。特别注意:恒差绝对不是已知误差,更不是已定系统误差(第四阶段没有这个概念)。
2、用于不确定度评定的误差方程就是代数合成法则的体现。
3、误差都遵循随机分布的含义是:一个恒定的常数值(误差)虽然未知,但它也是存在于一定的概率区间之内的,不会无限度的大。就是说,误差虽然未知,也不是无限度的未知,标准差本来就是它的不可知的程度的描述(不要把标准差仅仅理解成误差样本序列的离散度---虽然它可以是通过离散误差样本序列统计出来的,但也有合成分析出来的)。 |