(续前文)
--------------------------------------------------------
引文1 《史氏测量计量学说》 (征求意见稿第八章)
-
8.3 消除系统误差,提出“双探针法”
原苏联的微波标准方案,是滑动标准负载。主要误差项是接头等的固有反射误差。该误差项等于反射系数模值与反射角余弦的乘积。
余弦角与反射波的行程有关。改变行程1/4波导波长,反射角改变180度,则反射角余弦反号。注意到这一点,就可以消除该项误差。
在标准波导段上,设置两个探头,相距1/4λg。在两个探头上测得两个反射系数,取两个反射系数的平均值,则消除了固有反射误差。
这就是定度标准负载的双探针法。1966年初,在全国新产品展览会上展出。其中滑动式标准负载由大华仪器厂生产。
消除系统误差的“变相位正负抵消”法,后来被误差理论专家肖明耀(曾参加该项目鉴定会)写入误差理论书中。
-
8.4 选取光路减小系统误差
热轧钢板生产线上用的激光测厚仪,是几个年轻人的研制项目。负责人陈为民请我审查方案。我提出两点:1 误差分析结果,必须简化,要能提出对加工的具体要求;2 钢板倾斜误差是正切关系,小角度正切近似等于弧度,此项误差等于倾斜弧度,误差过大。这第二点,使方案不能成立。
经过几天的琢磨,我提出改进办法。倒换一下光路,将“斜入射、垂直检测”改为“垂直入射、斜检测”,于是,钢板倾斜误差,由正切变为倾斜角余弦与1之差,而小角度的余弦等于1减弧度的平方,则此项误差变成弧度的平方。弧度是百分之几,弧度平方是万分之几,这样,该项误差就可略了。此机后来正规生产,并有出口。
这里还有一点,体现误差分析的作用。美国人的方案,鉴于横梁的温度效应将引入测量误差,于是用温度系数小的石英制作横梁。我的误差分析结果是,横梁与立柱的误差符号相反,用同样的材料(铸铁)二者误差有相互抵消作用。美国的方案,顾了横梁而忘了立柱(因强度问题,立柱不能用石英材料),横梁用石英材料,代价高、不结实,又破坏了误差的抵消作用。
我们的方案,误差小、牢固而成本低。美国的报价是本机售价的5倍。
8.5 验证误差公式的外推法
误差公式是靠误差分析推导出来的。误差公式应该经过实验证明。
由于误差量通常很小,而测量仪器的分辨力有限,误差公式通常不能直接测量证明。外推法的要点是故意设置误差项的数值,达原值的几十倍到几百倍,就可用通常的较精密的仪器判别了。
在推导矢量网络分析仪(核心是双定向耦合器)的全解时,我发现:理论上信号源的反射不引入反射系数的测量误差。而美国的矢量网络分析仪有“信号源反射误差”项,等于信号源反射与被测反射系数的乘积(这对单定向耦合器反射计是对的)。
我的理论分析结论,是矢量网络分析仪的信号源反射不引入测量误差。这与国际上的认识相反。谁对谁错,必须用实验来判别。
做实验的方法是夸张信号源的反射系数。通常的信号源反射系数为小于0.05,直接测量,鉴别力低。我用一段焊锡丝缠在一个同轴线接头的内导体上,使产生0.3的反射并测准。先用正常信号源(反射小于0.02),测一滑动反射体,得反射系数r(A);将反射系数为0.3的接头接在信号源出口处(等效信号源反射系数为0.3),再测那个滑动反射体,得反射系数r(B)。实验结果是r(A)与r(B)相等,证明对矢量网络分析仪(双定向耦合器)来说,没有“信号源反射”这项误差。
1967年,为编写测量线检定规程,我清理说明书、教科书上的微波测量线的误差公式,证实了几种,否定了几种,用的都是外推法(《测量线检定与误差公式判别》无线电技术1976.10)。
建立基准,依靠误差公式,外推法更显得重要。
-------------------------------------------------------------------------------------------------------- |