瑕瑜互见-评崔先生的评论
史锦顺
-
第一段
在崔先生云山雾罩(从崔先生帖中学的词)的长篇评论中,竟有一段美玉般的话。特复制如下,不是抄录,保证不错一字。
-
所以说先生的方法能用,也是基于
“只有在认为R 是通过 R(实验) + R(N) 计算出来的时候才成立”,所以说先生算出的是一个误差限值,但是这一误差限值实际上要大于通常理解的误差限”,所以我说您的方法可用,但不是最切合实际
-
1 “先生的方法能用”、“您的方法可用”。为了与崔先生的长篇巨制的评论文章扣题,要说明:崔先生所称的“先生”是史锦顺,崔先生所称的“您”也是史锦顺。为什么要这样反复强调呢,是因为被题目所指名道姓的史锦顺,非常看重这句话。这两句话说全,或者说准确(《新概念测量计量学》所载史锦顺的方法,主要的就有18项,因此必须限定是当前所论项目),就是:史锦顺的误差方程能用,史锦顺的误差方程可用。
哈哈,快哉!我的误差方程,居然被认为“能用”、“可用”——特别是出自专门挑我毛病的崔先生之口,太难得了,真是弥足珍贵!是啊,老史头何求?虽已年迈,尚孜孜以求,不就是想给自己安身立命的测量计量界留点可用的东西吗?既然已被称为“能用”“可用”,当然就可以心安理得了。也就是说,崔伟群的气势凶凶的批判史锦顺的帖子,竟是在替史锦顺做宣传:史锦顺的误差方程可用,史锦顺的误差方程能用!
2 “只有在认为R 是通过 R(实验) + R(N) 计算出来的时候才成立”。对呀,我得出误差方程,自然是让人们计算用的。不计算,还搞方程干什么?我的前提是计算,崔先生说只有计算才成立,那就是说史锦顺的误差方程是成立的(当然成立,不成立崔先生怎会说“能用”“可用”?)
3 “先生算出的是一个误差限值,但是这一误差限值实际上要大于通常理解的误差限”。
这句话,表明崔先生的两个意思,一是说你算得是误差限。这话说得很对,我讲误差方程已有5次,每次都已经说明凡写成大写字母R的都是误差范围(而误差元用小写字母r表示),搞计量的人谁不知道,误差范围与误差限是同一个意思。难道只许你称误差限就不许别人叫误差范围?先生真是少见多怪。笔者手头的国家计量规范《JJF1180-2007》就规定用误差范围一词。谁不对?文中明明讲误差范围,谁看都明白的问题,还值得先生去推敲、引申吗?
先生的第二层意思,是说误差方程的结果大于通常理解的误差范围(当然可以叫误差限)。这个判断是正确的。是的,写论文、著书立说,就是要有新意。别人花时间、费精力看你的东西,就是看你的与人不同的观点、见解,从而得到可用或可借鉴的东西。史锦顺误差方程的意义,就在于指出误差范围的应有的值大于当前通常理解的误差范围的值,并能计算大多少。例如,笔者专业之一的时频计量,量传系数是1/10,这时,误差范围(用真值定义的)比误差范围的实验值(以标准的标称值为准,测出的)该扩大的倍数是1.11,此种量传是可以的。笔者专业之二的电子计量,绝大多数项目的量传系数是1/3(据笔者所知,这是五十年代学苏联形成的),用新得出的误差方程一算,误差范围比误差范围实验值,该扩大1.5倍,这可是一件大事,我国计量界该考虑我国的量传系数与量传系统的问题。(据叶德培专家讲课称,国外(大概指美国等工业国)量传系数最差的是1/4)。
本人提出的误差方程倘能引起关于量传系数的讨论与相应的提高,那将是计量界的大事。倘如此,笔者挨点骂,又算得了什么呢!
4 这一段的最后一句是“不是最切合实际”。外文讲究原级、比较级、最高级,汉语也有大致类似的说法。本人认为,“切合实际”足矣,我达不到“最”,也没能力去追求“最”。“最”的问题留给后人吧。(转下楼) |