-
njlyx提出一个测量学生身高的例子,我按不确定度的评定办法,评定一番,给出的结果显然违背常识。这就表明了不确定度评定的某些弊病。有人不大服气。一则说老史没遵守不确定度评定的规矩;再则说连个模型都没有,不够评定的资格;三则说题目本身是陷阱,是故意“挖坑”,意思是无端陷害不确定度理论。
这第三条,乃是科学研究中的“特例法”,就是举出明显的反例来,说明某种理论的弊病。因为,一种理论正确,此理论的各项必须全正确;而要否定一种理论,只要说明该理论的一条错误就够了。Njlyx的例子,在说明“统计问题不能除以根号N”这一点上,简单、明确,恰恰打中不确定度评定中不分“测量”与“统计”一律除以根号N的错误。倘因此而使一些网友正视不确定度评定的这个错误的话,则njlyx普及科学知识有功:挖坑是埋葬不确定度论的错误,可以避免一些人因“把错误当真理”而步入歧途,或者掉进“一律除以根号N”的陷阱。
至于另外的两条,老史就不解释了,老史的“评定”是按常规办事的,对比后边的两个例子,即可证实。
后边讲的两个例子,是著名的样板。前一个是GUM自身的例子;后一个是国家计量院总工程师施昌彦的样板评定,载于宣讲GUM的书中。
所引两篇文章,是几年前写的。主要说明:1 不确定度评定错把对象的问题当测量手段处理,不当地除以根号N,错误是严重的、普遍的,不是仅在njlyx的特例中才有。2 老史的处理方式,与这两个例子是相同的,不是老史的故意歪曲。
-----------------------
-
不确定度评定是一笔混沌账
—— 例1《GUM》温度测量评定
-
史锦顺
-
一 混沌之源
1 被测量是什么
被测量(liáng)的量(liàng),称为被测量(liàng)。经典测量的被测量是常量,只有唯一的值,即真值。统计测量的被测量是变量,设测量时间极短,是即时采样,每一时刻的采样值,各不一样。即时采样难以做到,于是定义采样量值,取某时段(例如秒或毫秒)的平均值。统计测量的采样量值各不一样。对系统变化要测量变化率;随机变化就测量其分散度(频率测量特称稳定度)
不确定度论怎样看待被测量呢?GUM说可以是常量,也可以是统计变量。这就把截然不同的对象,混淆起来。这是第一个混沌之源。
2 A类评定
A类评定是不确定度全部评定的核心。因为B类评定是引用人家的材料,只有A类评定是本家特产。说来也好笑,大名曰A类,原来就是用测量仪器测量被测量,且仅此而已,并无任何条件。倘此条管用,岂不极其简单易办,何其大块人心!何必去送检,何必跑计量院。哈哈,真省事。
不行啊,老兄。世上没有免费的午餐,没有那么便宜的事。
A类评定,用仪器测量被测量,算西格玛,这样就把被测量的变化与仪器的随机误差搅在一起了。这是第二个混沌之源。
-
二 混沌的主要形式
不确定度的中国式宣贯中,有构成不确定度的人、机、料、法、环一说,查不到国际文件根据,算是国人的发挥吧。我不赞成此说,但觉得这个概括简单、形象、上口,不管其本来目的如何,客观上描述了不确定度的大杂烩面目。面目一露,揭示其本质就容易了。
在正确使用仪器的情况下,所谓人(目光正视等)、法(方法当然不能错)、环(例如温度影响)这三项都应该包括在仪器的指标中。本来测量仪器的性能仅仅取决于“机”,就是测量仪器;现在把“料”(被测量)加进来,是不应该的。
把测量仪器性能(系统误差与随机误差,稳定性)与被测量的变化混在一起,是不确定度的混沌状态的基本形式。
三 不确定度的实质
不确定度论把不确定度定义为“分散性”,分散性到底是啥,让人说不清、道不明、参不透。领教不确定度论快二十年了,终于悟得如下一条名实大体符合的一条定义:
不确定度是由测量仪器误差与被测量的变化以及环境影响等共同构成的测得值对期望值的偏离程度。
再次说明,这个定义是我下的。恰当不恰当?拆台还是补台?请读者品评。我要说的是:不确定度的实质是混沌帐。
四 混沌导致的问题
我们举个例子,说明:一律除以根号N ,严重低估被测量的变化。
GUM在给出不确定度的数量定义时,说的十分明白,西格玛除以根号N叫A类不确定度(见叶书42页)。本来,变量本身的分散性是西格玛,被根号N除的结果就不是分散性了,而是一个缩小了根号N倍的值,此值太小了,用来表达被测量的变化性能,是极大的歪曲。
GUM有个测量温度的例子(见叶书47页,GUM2008版仍是同样的数)。测得值如下(单位摄氏度):
-
96.90/98.18/98.25/98.61/99.03/99.49/99.56/
99.74/99.89/100.07/100.33/100.42/100.68/100.95/
101.11/101.20/101.57/101.84/102.36/102.72
-
95 96 97 98 99 100 101 102 103 104 105
1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123
{ o o o o o [o o o o o o o o o ]o oo o o o o }
-----------------------------------------------------------------------------------------------------------------------------------------
-
GUM就上列数据给出结果:σ=1.49℃;除以根号20,得标准不确定度u=0.33℃
温度测得值的平均值是100.14℃,变化范围是96.90℃到102.72℃。下半宽为3.24℃;上半宽是2.58℃。 如此大的变化是温度计问题吗?显然不像,最普通的水银温度计,误差也在0.2℃以下。从其0.01℃的分辨力来看,大概是优于普通温度计的电子温度计。数据的变化,应该是被测量的变化。温度变化范围是5.82℃,这是实实在在的温度变化区间。
这个问题,显眼是变量测量,是统计测量问题。用统计理论处理此问题,求到σ,就是温度分散特性;Δ= 3σ= 4.5℃是极限偏差。由此给出指标±Δ,即±4.5℃;实测数据20个,都在所给区间内,符合逻辑。
请看GUM的处理。σ除以根号20,得不确定度u=0.33℃,此为标准不确定度;按GUM常例,k取2,于是得扩展不确定度U=0.66℃. 即数据包含区间的半宽是0.66℃. 区间高端是100.80℃;区间低端是99.48℃。对照实际数据,高端排除7个数,低端排除5个数。
一共才20个数据,不确定度论算出的区间,竟只包含8个数据,而排除12个数据。什么置信区间?什么包含区间?置信不可信,包含区间不包含。不确定度真不是东西!难怪计量院的一位副院长说它是“瞎扯淡”,马凤鸣说它是“吃饱撑的”,而一位网友说它是“洋垃圾”。
-------------------
-
不确定度评定是一笔混沌账
—— 例2 温度测量评定样板
-
史锦顺
-
评论对象:国家计量技术法规统一宣贯教材《测量不确定度评定与表征指南》
有下划线的是原文摘抄,无下划线的是史锦顺的评论。
问题的提出 现有标称温度示值被调控到400℃的工业容器,测量人员选用带K型热电偶的数字式温度计来测量该容器内部某处的实际温度。
从制造厂说明书查知数字温度计的分辨力为0.1℃。准确度为±0.6℃。K型热电偶每年校准一次,今年的校准证书表明其不确定度为2.0℃(置信水准为99%),在400℃时的修正值为0.5℃。当恒温容器的指示器表明调控到示值400℃时,稳定半小时后从数字温度计上重复测得10个显示值di,如下(单位℃):
401.0;400.1;400.9;399.4;398.8;400.0;401.0;402.0;399.9;399.0
修正后的测量结果为 t=400.2℃+0.5℃=400.7℃
分析的主要点
平均值400.42℃
算残差 残差的平方和 按贝塞尔公式算单值的标准偏差
σ(d)= 1.03 ℃
平均值的标准偏差为σ(d)除以根号N,(N=10)得
σ(d平)= 0.33℃
主要不确定度来源及计算(单位℃)
来源 类型 原不确定度 得标准不确定度
测量重复性s(d平) A 0.33 0.33
仪表准确度mpe B 0.6 0.35
热电偶校准 B 2.0 0.78
u(均方合成) 0.92
测量不确定度U=2u=1.8℃
测量结果 t=400.7℃ U=1.8℃
【史评】
此项评定样板,有类似的例(见GUM4.4.3)。这里更详细。此例评定,严格地按不确定度评定规则办事,表现出不确定度评定的本来面目,比较全面地体现了不确定度论的弊病。如是,老史的评论就来劲了:我评的是不确定度论本身!
1表达混沌
计量与测量,对象是量。量分两种:常量与变量。于是测量也就有两类:常量测量与变量测量。
物理量的变化量远小测量仪器误差范围的情况是常量测量,即经典测量,其理论被称作误差论。
测量仪器误差范围远小于物理量变化量的情况是变量测量,又称统计测量,要用统计理论。例如,当今频率界的频率稳定度测量就是统计测量。两类测量交叉,产生一种特殊测量,那就是物理常数测量。用当时世界上最准确的测量仪器去测量宇宙间最稳定的量值,区分不开物理量的变化与测量仪器的误差,只能二者混在一起。非当代最高水平的测量,即一般的精密测量,必须清楚自己是两类中的哪一类,不得混沌地表达。因为两类测量该用的σ,相差根号N倍!
当今,时频测量计量界,无论测量与计量,分清这两类,人们已形成习惯。或者选择误差满足要求即误差可忽略的频率测量仪器,去测量信号源的频率值及其变化量;或者选误差范围可略的频率标准,被待考核的频率计测量,以考查频率计的指标,产生的偏差与变化量都算频率计的。如果有人用10的-6次方的频率计去测量10的-6次方级的晶振,那将被认为是不懂测量,因为这样给出的表征量,无法确定该归属哪一方。频率测量易精确,时频界常取10比1;电子测量难精确,电子计量界一般取3比1.
回到本例,这是一笔混沌帐。表征量是恒温容器的,还是测量仪器的,说不清。不知测量目的是什么,是容器的温度控制水平还是考查测量仪器误差?都不像。不明确测量目的,不根据需要选择符合要求的测量仪器,拉过来就测,测了就评,也不管评的结果干什么用。这是不确定度论的弊病之一。本例体现了这一点。
2 概率错位
统计理论是一门科学。它处理的对象是随机事件或随机变量。量值的随机偏差,或者是测量的随机误差,应当用统计理论处理,但系统误差是不能用统计方法处理的。对系统误差找分布,求概率,特别是按处理随机误差的方式处理,是不对的,概率错位了。系统误差代表标准与测量仪器的水平,减小系统误差是计量测量研究的主要任务。不确定度论忽视系统误差,错误地处理系统误差,是它的又一个弊病。
3 错取标准偏差
表征随机变量的分散程度的量是σ,即单值的标准偏差;而不是平均值的标准偏差σ(平)。统计测量的前提是测量仪器的误差可略,测得值的每一个都是实际值,按贝塞尔公式算出的σ,是单值的标准偏差,正是它,是量值分散性的表征量。不确定度理论取平均值的标准偏差作为表征量(即有除以根号N的操作),这是个带根本性的错误。也许有人说,国际组织,而且是八大国际组织有权作决定,就得用平均值的标准偏差做表征量。应知,权大不过理,人们一旦明白,还是认理的。著名的阿仑方差就是单值的表征量。经典测量理论可以用σ(平),因为随机误差可以减小而且应当减小。统计测量中,偏差是量的客观属性,人为地缩小对客观量的表征,是错误的。不确定度定义是“分散性”,却将分散性人为地低估根号N倍,这是一个极大的错误。
4 不要准确度
不确定度论从否定真值出发,否定误差,否定准确度。目的是用不确定度一统测量计量领域,可惜不确定度没那个本事,表达不了该表达的事。此例中一个重要的指标,即温度控制的准确度,不确定度论没法说,本例也就不说。不确定度理论不包含标称值的事,因此该容器在这里标多少是没关系的。此评定居然不用400摄氏度这个量!
本人1958年在北大半导体厂劳动一个月,用恒温炉烧制热敏电阻,最关键的是炉温控制的准确度。在不确定度论的表达中,竟无控温准确度这一项,要它作甚! |