耐特信计量检测服务平台_计量管理软件

快捷导航
计量基础
收藏本版 |订阅

计量基础 今日: 0|主题: 1927|排名: 2 

发新帖
打印 上一主题 下一主题

设计的定量分析-评UA评定(14)...

[复制链接]
zhangsan 发布于: 2016-8-22 21:54 3543 次浏览 2 位用户参与讨论
跳转到指定楼层
               设计的定量分析-UA评定(14)

                                                                                                  史锦顺      

-

本段讲测量计量学的一项新发展——测量方程。说明误差理论的基础是定量的。不确定度论攻击误差理论是定性的(说误差理论是理想的,意思是不能定量计算),那是诬陷。本段讲误差理论意义下的测量方程的定量计算,以驳斥不确定度论的谬说。而不确定度论的测量方程,没有涉及测量仪器或标准的内部构成,不能在设计测量仪器或研制计量标准的场合中应用。

-

() 不确定度论中的测量方程

    不确定度论的测量方程如下(译自“Essentials of expressing measurement uncertainty”)

感兴趣的情况是被测量不是直接测量的,而是通过函数关系 f N个另外的量X1,X2,……XN 来确定的,常称的测量方程为:

              Y = f(X1, X2, . . . , XN)                                                               (1)

所包含的量Xi,因其他一些变化原因,如不同的观察者,仪器,样品,实验室及观察时间的不同,而不同于原量。因此,方程(1)所表示的函数关系不是单纯的物理定律,而是一个测量过程。事实上,它对测量结果引入了不确定度。

被测量估算值或称输出量,记为y,它是由输入量X1,X2,……XN的估值x1,x2,……xN来求出。因此做为测量结果的输出量估值y为:

             y = f(x1, x2, . . . , xN).                                                                (2)

例如,如ISO导则给出的,一电位差加在与温度有关的电阻上,此电阻在定义温度to时的电阻是Ro,线性温度系数是b,则加于此电阻上的功率(被测量)在温度为t时对V,Ro,b以及t的依赖关系为

            P = f(V, Ro, b, t) = V2/Ro[1 + b(t to)].                                   (3)


以上是不确定度理论的测量方程。

-

(二)《新概念测量计量学》的测量方程

1 测量方程的一般形式

测量方程就是把物理公式与计值公式联立起来,组成一个整体。

建立测量方程的核心思想是区分量值的概念。物理公式中的量都是客观的量,准确的量,物理公式本身是超脱测量误差的,从物理公式本身难寻误差的踪迹。测量中用以计算的根据是物理公式,但所用的量,与物理公式中的量是有区别的,把这个区别标示出来,便是计值公式。常用的区分标志有两种,一是表示是测量得出的值,可用m标示,二是认定的的标准值或标称值,用o来表示。把物理公式和计值公式联立起来,就得出测量方程。

被测量Y由诸量X决定,Y是函数,诸X是构成Y的来源量。

在测量方程中,各量成对。被测量的测得值Ym与被测量Y是一对。被测量Y是客观存在,是常量,而被测量的测得值Ym是变量。决定Y的各来源量X,各有一个Xm或Xo与其对应。如Xi与Xim对应,则Xi是常量,Xim是变量;若Xj与Xjo对应,则Xj是变量,而Xjo是常量。

设物理公式为:

      Y = f(X1,X2,……XN)                                        (1)

计值公式为:

      Ym= f(X1m/o,X2m/o,……,XNm/o)                             (2)

式中斜杠“/”表示“或”。m表示测得值,o表示标称值。m/o表示或者是测得值m,或者是标称值o。例如X1m/o表示是X1m或者是X1o.

联立(1)(2),而者相除,得:

      Ym = [f(X1m/o,X2m/o,……,XNm/o)/ f(X1,X2,……XN)] Y        (3)

联立(1)(2),而者相减,得:

      Ym = f(X1m/o,X2m/o,……,XNm/o)-f(X1,X2,……XN) + Y         (4)

(3)、(4)都是测量方程,依应用方便而选取。

-

(接下页)
回复

使用道具 举报

已有2人评论

沙发
ck99945 发表于 2016-8-22 22:55:36
1# 史锦顺  文


   2
例:频率测量的测量方程

测频的物理公式为:

      f = N/T                            (5)

f是频率的实际值,N是振荡次数的准确值,T是闸门实际时间。

测频的计值公式为

      fm = Nm/To                         (6)

fm是频率的测得值,Nm是振荡次数的测得值,To是闸门的标称时间。

联立物理公式(5)和计值公式(6)。

计值公式(6)被物理公式(5)除,得测量方程为:

      fm = [NmT/(NTo)]f                  (7)

对测量方程(7),进行量值分析:测得值fm、记得脉冲数Nm、闸门实际时间T是变量;而频率实际值f、实际脉冲数N、标称闸门时间To是常量。误差分析第一种方法是对各变量作微分;第二种方法是把变量展成常量加小增量。

这样的分析,逻辑顺畅了。

下面以小量法分析。表fm=f+Δfm;
          Nm=N+ΔNm ; T=To+ΔT, 代入(7)式

      (f+Δfm)/f = (N+ΔNm)(To+ΔT)/NTo

      1+δfm =1+δNm +δT

则有

      δfm =δNm +δT                   (8)

-

(三)两种测量方程的比较

《新概念测量计量学》的测量方程(下称甲方程)和不确定度理论的测量方程(下称乙方程)是有本质区别的。

1 甲方程的对象是直接测量;乙方程的对象是间接测量。

2 甲方程是一个量的内部结构关系;乙方程是几个量的相互关系。

3 甲方程联立了计值公式和物理公式,确立了测得值与实际值的关系;乙方程实际停留在计值公式上,没有建立起与物理量的关系。

4 甲方程有明晰的区分量值是常量还是变量的概念,乙方程没有这个概念。

5 甲方程可分析计算直接测量的误差,可用来设计测量仪器;而乙方程只能用于计算间接测量的误差传递关系,而这些在原误差理论中是有的。乙方程不能用来设计直接测量的测量仪器。

6 甲方程的实例,都是结合实际的、可用的;乙方程给出的实例,是个游戏式的例子,懂点电学和测量知识的人,一看便知,世界上不会有人那样去测量功率。因为那样测不准。(正常的测量方法是串接电流表、并联电压表,准确度要高得多。)

-

结论:在误差理论意义下的测量方程是实用的;不确定度的测量方程没有实际内容,因为它反对真值概念,而一经脱离真值(客观值、实际值)便没法谈误差问题(测得值对实际值的偏离),也就无法建立测量方程。不确定度论的例子,是量值传递方程,与揭示测量仪器或计量标准内部规律的测量方程不沾边。

-
回复 支持 反对

使用道具 举报

板凳
chaojiwantong 发表于 2016-8-22 23:34:44
有点深奥,学习啦
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册   

本版积分规则

QQ| 耐特信计量检测服务平台_计量管理软件  

Copyright © 2001-2016 Netson Inc.   All Rights Reserved.

Powered by Netson ( 粤ICP备14061212号-1 )

快速回复 返回顶部 返回列表