海森堡不确定性原理不限制单一测量的准确度。
原文
uncertainty principle physical principle, enunciated by Werner Heisenberg in 1927, that places an absolute, theoretical limit on the combined accuracy of certain pairs of simultaneous, related measurements. The accuracy of a measurement is given by the uncertainty in the result; if the measurement is exact, the uncertainty is zero. According to the uncertainty principle, the mathematical product of the combined uncertainties of simultaneous measurements of position and momentum in a given direction cannot be less than Planck's constant h divided by 4π. The principle also limits the accuracies of simultaneous measurements of energy and of the time required to make the energy measurement. The value of Planck's constant is extremely small, so that the effect of the limitations imposed by the uncertainty principle are not noticeable on the large scale of ordinary measurements; however, on the scale of atoms and elementary particles the effect of the uncertainty principle is very important. Because of the uncertainties existing at this level, a picture of the submicroscopic world emerges as one of statistical probabilities rather than measurable certainties. On the large scale it is still possible to speak of causality in a framework described in terms of space and time; on the atomic scale this is not possible. Such a description would require exact measurements of such quantities as position, speed, energy, and time, and these quantities cannot be measured exactly because of the uncertainty principle. It does not limit the accuracy of single measurements, of nonsimultaneous measurements, or of simultaneous measurements of pairs of quantities other than those specifically restricted by the principle. Even so, its restrictions are sufficient to prevent scientists from being able to make absolute predictions about future states of the system being studied. The uncertainty principle has been elevated by some thinkers to the status of a philosophical principle, called the principle of indeterminacy, which has been taken by some to limit causality in general. See quantum theory .
译文
物理理论不确定性原理,由海森堡于1927年阐明。指明同时测量某些测量对时,综合准确度的限制。测量的准确度由测量结果的不确定度给定。如果测量是精确的,则不确定度为零。 根据不确定性原理,同时测量位置和给定方向的动量时,合成不确定度之积,不能小于普朗克常数除以4π。此原理还限制同时测量能量与测量能量所需时间的测量准确度。普朗克常数特别小,在宏观世界中,对通常测量,不确定性原理的限制效应不显现;而对原子和粒子的尺度,不确定性原理的限制效应非常重要。由于此场合不确定性的存在,亚微观世界的显现为统计,而非必然可测。大尺度中,在时空所描述的框架中,谈因果关系是可以的;在原子世界,这是不可能的。这种描述要求诸如位置,速度,能量以及时间的精确测量,而由于不确定性原理,这些量不能精确测量。不限制单一测量的准确度,也不限制非同时测量的准确度,非不确定原理要求的成对的量,同时测量也不限制准确度。即使如此,科学做出所研究的系统的关于未来状态的绝对预言,它的限制是充足的。不确定性原理被一些思想家引申去研究哲学,称为模糊原理,被用于限制通常的因果关系。见量子理论。
Bibliography: See W. Heisenberg, The Physical Principles of the Quantum Theory (tr. 1949); D. Lindley, Uncertainty (2007). |