接1# 史锦顺 文
1 微小误差可略原理
以相对真值表征绝对真值。计量标准的标称值作为计量测量仪器时的真值;上级计量标准的标称值作为下级计量标准的真值。基准的标称值,是一切计量标准与所有测量仪器的真值。
-
2 等量代换原理(参见《误差与不确定度百论集》p265)
“等量代换法则”包括测量的等量代换、计量的等量代换、贝塞尔公式的等量代换,测量方程的等量代换、误差方程的等量代换。
-
3 保险代换原理
测量计量领域广泛运用的重要代换是保险代换,这是有较大安全裕度的代换,就是误差范围对误差元的代换。由于误差范围以99.73%(取3σ)的概率包含误差元,因此,以误差范围代替误差元,是充足条件代换,即保险代换。由是,通常测量者以测量仪器的误差范围当做测量误差,计量者以计量标准的误差范围当做检定的误差,既方便又合理。
误差理论与其指导下的操作是正确的。世界近代三百年的测量计量事业是成功的,有些是卓有成效的。UA对CA的指难,不成立。
-
(二)点评不确定度论的基本理论
1 不确定度的定义
【UA】
根据所用到的信息,表征赋予被测量量值分散性的非负参数
-
【史评】
定义是明确概念的逻辑形式。马虎不得。不确定度的定义,20年来,几经变化,实在是“不确定”,让人难以理解不确定度到底是什么东西。上条是VIM 2012的最新版本(同于2008版)。
分散性,仅仅是量值或测得值特性的极小的一部分。测得值的要害是对真值的偏离程度,由于不确定度论否定真值,不好提偏离性,也无法说明“分散”一词是指谁对谁的分散。于是不确定度论的混乱性就无法避免。
GUM说不确定度是可信性,有人说是可靠性,有人说是误差的误差,都不沾边。不确定度论的立意是代替误差理论,可是它无能、无信;二十年来,只是添麻烦,造混乱,没有些许有益的建树。
-
2 标准不确定度
【UA】
按贝塞尔公式计算σ;σ除以根号N是标准不确定度。
-
【史评】
运用贝塞尔公式计算的前提,必须先定义被统计的单元。在经典测量学中,统计的标准是真值,统计单元是误差元;统计中,统计标准是数学期望,统计单元是偏差元(测得值减数学期望)。真值是客观存在;数学期望是测量次数无限时平均值的极限。真值、数学期望都是理想值。不确定度一出世就极力攻击理想值,于是既不可能承认真值,也不好提作为理想值的数学期望,于是也就给不出“统计单元”来。硬套贝塞尔公式,是滥用。
(接下页) |